Abstract

Soil microbes contribute significantly to soil respiration (SR) in boreal forests; however, there is limited knowledge on microbial contributions from long field investigations. The objective of this study was to estimate soil microbial respiration, as well as its primary controlling factors, for a period of three consecutive years. A trenching method was used to distinguish soil microbial respiration (R Mic) in a 55-year-old mature Japanese larch (Larix kaempferi) plantation in Northern Japan; the soil in which developed originally from volcanic soils containing pumice. We used a portable CO2 detection system to measure the soil respiration rate during the growing season. Environmental factors, soil physiochemical characteristics, and soil microbial biomass carbon and nitrogen (MBC and MBN) were analyzed to explain the seasonal variations of SR and R Mic. The results showed that the estimated contribution of soil microbes to SR was 78, 62, and 55% during the three successive years, respectively. Respiration attributable to decomposition of aboveground litter contributed approximately 19% to SR. The major environmental factor that affected R Mic was soil temperature at 5 cm depth, which accounted for more than 70% of the seasonal variation in R Mic observed. There were close relations among MBC, MBN, and soil water content, but the soil water content showed no significant relation with R Mic. The R Mic to SR varied from 78 to 55% following 3 years of trenching treatments. Our results demonstrated the important role of soil microbes on soil respiration in this larch forest. Soil temperature was the major positive factor that influenced R Mic, while soil water content had no significant effect. Global warming will increase the loss of C into the atmosphere by increasing the R Mic, and could accelerate climate change.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.