Abstract
Inadequate delivery of nutrients results in intrauterine growth restriction (IUGR), which is a leading cause of neonatal morbidity and mortality in livestock. In ruminants, inadequate nutrition during pregnancy is often prevalent due to frequent utilization of exensive forage based grazing systems, making them highly susceptible to changes in nutrient quality and availability. Delivery of nutrients to the fetus is dependent on a number of critical factors including placental growth and development, utero-placental blood flow, nutrient availability, and placental metabolism and transport capacity. Previous findings from our laboratory and others, highlight essential roles for amino acids and their metabolites in supporting normal fetal growth and development, as well as the critical role for amino acid transporters in nutrient delivery to the fetus. The focus of this review will be on the role of maternal nutrition on placental form and function as a regulator of fetal development in ruminants.
Highlights
It is widely accepted that maternal nutrient restriction during gestation results in offspring that are smaller at birth than counterparts from adequately fed mothers [1,2,3,4]
Our results show that stage of pregnancy impacts relative expression of multiple amino acid transporters
Optimal fetal growth requires the efficient delivery of nutrients to the fetus and corresponding removal of waste products associated with fetal metabolism and growth
Summary
It is widely accepted that maternal nutrient restriction during gestation results in offspring that are smaller at birth than counterparts from adequately fed mothers [1,2,3,4]. Recognizing that placental development is a major indicator of birth weight, researchers have found an ever occurring commonality among studies: the morphology of the placenta is altered under nutrient scarce conditions, with the most notable change being increased development of the fetal cotyledon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.