Abstract

Abstract The forcing of stationary waves by the earth’s large-scale orography is studied using a nonlinear stationary wave model based on the quasigeostrophic equations. The manner in which wind speed, meridional temperature gradient, Ekman pumping parameter, linear damping, orographic shape, and meridional wind structure affect the validity of the linearized equations is examined and the nonlinear response is investigated. A critical mountain height that separates the linear from the nonlinear regime is defined based on the linear quasigeostrophic potential temperature equation applied at the surface. The largest critical heights (those responses in which nonlinearity is least important) are obtained when the surface damping is weak or nonexistent. Also, relative maximums in mountain critical heights are obtained when the ratio of surface wind to surface wind shear does not vary in the meridional direction. These critical height results are validated using the fully nonlinear stationary wave model. The n...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call