Abstract

Laboratory-scaled hydraulic fracture tests were conducted on directionally oriented sandstone material, along with measurements of directional rock properties such as tensile strength, permeability, sonic velocity, and dynamic elastic constants. In these tests, fracture orientation was determined as a function of various combinations of stress, rock saturation, rate of borehole pressurization, and direction of minimum tensile strength relative to minimum horizontal compressive stress. The objective of the experiment was to investigate whether horizontal stresses always controlled the orientation of induced vertical hydraulic fractures, or if, under conditions of small differences in stress and/or slow borehole pressurization rates, the induced fracture direction was influenced by directional properties of the rock matrix. This study shows that the expected influence of horizontal earth stress on the orientation of an induced hydraulic fracture becomes negligible whenever the magnitude of the difference between the compressive stresses is 200 psi or less. When this occurs, fracture orientation is controlled by the directional properties of the rock--primarily permeability and tensile strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.