Abstract

Our objective was to evaluate the factors that affect effective torque control during en-masse anterior retraction by using intrusion overlay archwire and partially osseointegrated C-implants as the exclusive sources of anchorage without posterior bonded or banded attachments. Base models were constructed from a dental study model. No brackets or bands were placed on the posterior maxillary dentition during retraction. Different heights of the anterior retraction hooks to the working segment archwire and different intrusion forces with an overlay archwire placed in the 0.8-mm diameter hole of the C-implant were applied to generate torque on the anterior segment of the teeth. The amount of tooth displacement after finite element analysis was exaggerated 70 times and compared with tooth axis graphs of the central and lateral incisors and the canine. The height of the anterior retraction hook and the amount of intrusion force had a combined effect on the labial crown torque applied to the incisors during en-masse retraction. The difference of anterior retraction hook length highly affected the torque control and also induced a tendency for canine extrusion. Three-dimensional en-masse retraction of the anterior teeth as an independent segment can be accomplished by using partially osseointegrated C-implants as the only source of anchorage, an intrusion overlay archwire, and a retraction hook (biocreative therapy type II technique).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call