Abstract

The impedance catheter allows continuous measurement of ventricular volume. External influences have been described as causing parallel shifts in impedance-measured volumes; however, factors affecting impedance measurements in a nonparallel manner have not been fully characterized. Accordingly, an impedance catheter was placed inside a latex balloon into which known volumes of normal saline solution were injected. Conductive and noncenductive materials were individually placed within the balloon. Impedance was measured with materials touching (T) or not touching (NT) the catheter. Impedance-measured volumes were plotted versus actual volumes. Compared with the line of identity (LID), a statistical difference (p < 0.05) was found in the slopes in the presence of metallic objects only. These included a pacing lead (T, NT) (mT = 1.32, mNT = 1.29 versus mLID = 1.00), titanium (T) (mT = 1 68 versus mLID = 1.00), and aluminum (NT) (mNT = 0.72 versus mLID = 1.00). These changes in slope indicate nonparallel effects on impedance that confound the ability of the impedance catheter to determine volumes in vitro. These observations imply that serial calibration of both the slope constant (α) and the intercept (parallel conductance) of impedance may be necessary for in vivo measurements of ventricular volume based on impedance in the presence of metallic objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.