Abstract

BackgroundMalaria accounts for ~21% of outpatient visits annually in Kenya; prompt and accurate malaria diagnosis is critical to ensure proper treatment. In 2013, formal malaria microscopy refresher training for microscopists and a pilot quality-assurance (QA) programme for malaria diagnostics were independently implemented to improve malaria microscopy diagnosis in malaria low-transmission areas of Kenya. A study was conducted to identify factors associated with malaria microscopy performance in the same areas.MethodsFrom March to April 2014, a cross-sectional survey was conducted in 42 public health facilities; 21 were QA-pilot facilities. In each facility, 18 malaria thick blood slides archived during January–February 2014 were selected by simple random sampling. Each malaria slide was re-examined by two expert microscopists masked to health-facility results. Expert results were used as the reference for microscopy performance measures. Logistic regression with specific random effects modelling was performed to identify factors associated with accurate malaria microscopy diagnosis.ResultsOf 756 malaria slides collected, 204 (27%) were read as positive by health-facility microscopists and 103 (14%) as positive by experts. Overall, 93% of slide results from QA-pilot facilities were concordant with expert reference compared to 77% in non-QA pilot facilities (p < 0.001). Recently trained microscopists in QA-pilot facilities performed better on microscopy performance measures with 97% sensitivity and 100% specificity compared to those in non-QA pilot facilities (69% sensitivity; 93% specificity; p < 0.01). The overall inter-reader agreement between QA-pilot facilities and experts was κ = 0.80 (95% CI 0.74–0.88) compared to κ = 0.35 (95% CI 0.24–0.46) between non-QA pilot facilities and experts (p < 0.001). In adjusted multivariable logistic regression analysis, recent microscopy refresher training (prevalence ratio [PR] = 13.8; 95% CI 4.6–41.4), ≥5 years of work experience (PR = 3.8; 95% CI 1.5–9.9), and pilot QA programme participation (PR = 4.3; 95% CI 1.0–11.0) were significantly associated with accurate malaria diagnosis.ConclusionsMicroscopists who had recently completed refresher training and worked in a QA-pilot facility performed the best overall. The QA programme and formal microscopy refresher training should be systematically implemented together to improve parasitological diagnosis of malaria by microscopy in Kenya.

Highlights

  • Malaria accounts for ~21% of outpatient visits annually in Kenya; prompt and accurate malaria diagnosis is critical to ensure proper treatment

  • Study design and area From March to April 2014, a cross-sectional survey was conducted in public-sector health facilities that included pilot QA programme facilities to identify factors associated with accurate malaria microscopy diagnosis in low-malaria transmission counties in Kenya

  • More QA-pilot facilities were in urban settings (48 vs 19%), participated in an external laboratory-strengthening program (i.e., Stepwise Laboratory Improvement Progress Towards Accreditation (SLIPTA)) (19 vs 14%), and had microscopes in good optical condition (95 vs 86%) compared to non-QA pilot facilities

Read more

Summary

Introduction

Malaria accounts for ~21% of outpatient visits annually in Kenya; prompt and accurate malaria diagnosis is critical to ensure proper treatment. Parasitological diagnosis is recommended by the World Health Organization (WHO) for all patients in whom malaria is suspected as part of the ‘test, treat, track’ strategy [4, 5]. Both microscopy and malaria rapid diagnostic tests (RDT) are recommended malaria diagnostic methods by the Kenya National Malaria Control Programme (NMCP) [6,7,8]. Over 90% of public health facilities in Kenya had the capacity to diagnosis malaria, the proportion of facilities performing malaria microscopy, approximately 50%, has not changed in recent years [9]. Despite the high proportion of health facilities offering malaria diagnostic services, only 31% of malaria cases were confirmed by parasitological diagnosis in Kenya in 2013 [3]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.