Abstract

Transcranial magnetic resonance-guided focused ultrasound (FUS) therapy is a less invasive stereotactic treatment for tremor and other movement disorders. A sufficiently high temperature in the target brain tissue is crucial during ablation procedures for good outcomes. Therefore, maximizing the heating efficiency is critical in cases where high temperature cannot be achieved because of patient-related characteristics. However, a strategy to achieve the desired therapeutic temperature with FUS has not yet been established. This study aimed to investigate the procedural factors associated with heating efficiency in FUS. We retrospectively reviewed and analyzed data from patients who underwent FUS for ventralis intermedius (VIM) nucleus thalamotomy. In all, 30 consecutive patients were enrolled. 18 with essential tremor (ET), 11 with tremor-dominant Parkinson’s disease (TDPD), and 1 with Holmes tremor. Multivariate regression analysis showed that decline in heating efficiency was associated with lower skull density ratio (SDR) and a greater subtotal rise in temperature until the previous sonication. To maximize heating efficiency, the temperature increase should be set to the least value in the target alignment and verification phases, and subsequently should be increased sufficiently in the treatment phase. This strategy may be particularly beneficial in cases where high ablation temperatures cannot be achieved because of patient-related characteristics. Importantly, a broad patient population would benefit from this strategy as it could reduce the need for high energy to achieve therapeutic temperatures, thereby decreasing the risks of adverse events.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.