Abstract

We have studied the protein components and nucleic acid sequences involved in stably activating the ribosomal DNA (rDNA) template and in directing accurate transcription of mammalian rRNA genes. Two protein components are necessary to catalyze rDNA transcription, and these have been extensively purified. The first, factor D, can stably associate by itself with the rDNA promoter region and is responsible for template commitment. The second component, factor C, which appears to be an activated subset of polymerase I, can stably bind to the factor D-rDNA complex but not to the rDNA in the absence of factor D. A third component which had been previously identified as a rDNA transcription factor is shown to be a RNase inhibitor. Extending our earlier observation that the approximately 150-base-pair mouse rDNA promoter consists of a minimal essential region (residues approximately -35 to approximately +9) and additional upstream stimulatory domains, we now report that each of these promoter domains acts to augment the binding of the polymerase I transcription factors. A minimum core region (residues approximately -35 to approximately -15) is capable of stable complex formation and of binding transcription factor D. Factor C can also bind to this D-core region complex.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.