Abstract

We explored the relationship between fragment area, topographic heterogeneity, and disturbance intensity with tree and shrub species diversity in seasonally dry oak forest remnants in the Mixteca Alta, Oaxaca, Mexico. The fragments are distributed in a matrix of eroded lands and crop fields, have a complex topography, and are disturbed by plant extraction and trail opening. Sampling was conducted in 12 fragments from 12-3 211 ha. Topographic heterogeneity was estimated by the fragment's standard deviation in slope-aspect, slope, and altitude. The density of stumps and roads were used as estimators of disturbance intensity. Fisher's α diversity ranked from 0.95 to 4.55 for the tree layer; and 2.99 to 8.51, for the shrub layer. A structural equation model showed that the diversity of woody plants increases with topographic heterogeneity and disturbance in the remnants. When these 2 variables were considered, diversity tended to decrease with fragment size probably because smaller fragments have a greater perimeter-to-area ratio and therefore proportionally offer more opportunities for pioneer species colonization. Indeed, the tree-to shrub-layer diversity ratio increased with fragment size. Conservation strategies in fragmented forests must consider the fragment's environmental heterogeneity, the disturbance type and intensity, and the species to be preserved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call