Abstract
A hybrid process with membrane bioreactor (MBR) and powdered activated carbon (PAC), PAC/MBR, was used for real municipal wastewater treatment and reuse. The roles of chlorine dose, contact time, pH and bromide in trihalomethane (THM) formation and speciation during chlorination of the reclaimed water were investigated. Total trihalomethane (TTHM) yield exponentially increased to maximum with increasing chlorine dose (correlation coefficient R2=0.98). Prolonging substrate chlorine contact time significantly promoted TTHM formation. Less than 40% of THMs formed in the first 24 h, indicating that the PAC/MBR effluent organic matters were mostly composed of slow-reacting precursors. Increasing pH and bromide concentration facilitated THM formation. Higher chlorine dose and contact time enhanced chloro-THM formation. The bromo-THM formation was favored at near neutral condition. Despite the variation of chlorine dose, contact time and pH, the yield of THM species in order was usually CHCl3>CHBrCl2>CHBr2Cl>CHBr3. However, THM speciation shifted from chlorinated species to brominated species with increasing bromide concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Water science and technology : a journal of the International Association on Water Pollution Research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.