Abstract
A new γ-ray-radiation dosimetric system (TDS-HMTA), comprising a 'total dissolved solids (TDS)' meter and 0.02 M aqueous hexamethylenetetramine (HMTA) solution, is introduced for medical and biological applications. Gamma-ray radiolysis of aqueous HTMA solutions increases the concentrations (ppm) of TDS, which is measured by the TDS meter. The effects of HMTA concentration, absorbed radiation dose, absorbed dose rate, and storage time on the TDS concentration of irradiated HMTA solutions were studied. It was found that 0.02 M aqueous HMTA solution yields the highest sensitivity to γ-ray-radiation according to TDS concentration measurements. The effect of absorbed radiation dose was studied in the range 1.64–435.5 kGy. The TDS concentration increases linearly up to the maximum of the studied absorbed radiation dose range (R2 = 0.9965). The overall coefficient of variation (CV %) associated with TDS concentration measurements of 0.02 M HMTA solution as a function of absorbed dose was found to be 0.732%. The effect of dose rate on the TDS concentration was studied in the range 0.33–3.31 kGy/h. It was found, also, that the TDS concentration is relatively stable over a storage period of 144 h after irradiation with different doses. The tissue equivalency of 0.02 M aqueous HMTA solutions allow it to be used for radiation dose measurement during sterilization in human tissue banks. Therefore, this system (TDS–HMTA) could be considered as a promising candidate for γ-ray radiation dosimetry in technical, medical and research fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.