Abstract

Coconut is a high-quality agricultural product of the Asia–Pacific region. In this paper, coconut shell which mainly composed of cellulose, hemicellulose, lignin was used as a raw material for coconut shell oil from coconut shell pyrolysis. The influence of the pyrolysis temperature, heating rate and particle size on coconut oil yield was investigated, and the effect of heating rate on coconut oil components was discussed. Experimental results show that the maximum oil yield of 75.74 wt% (including water) were obtained under the conditions that the final pyrolysis temperature 575 °C, heating rate 20 °C/min, coconut shell diameter about 5 mm. Thermal gravimetric analysis was used and it can be seen that coconut shell pyrolysis process can be divided into three stages: water loss, pyrolysis and pyrocondensation. The main components of coconut-shell oil are water (about 50 wt%), aromatic, phenolic, acid, ketone and ether containing compounds.

Highlights

  • Energy shortages and environmental contamination are growing problems in modern society

  • Biomass oil is a natural fuel product which can be obtained from cellulose and hemicelluloses synthesized during photosynthesis (Li and Ying 2009)

  • Thermocouple was put in the middle of the coconut shell fragments and connected with the electric heating mantle to control the pyrolysis temperature

Read more

Summary

Introduction

Energy shortages and environmental contamination are growing problems in modern society. Biomass oil is a natural fuel product which can be obtained from cellulose and hemicelluloses synthesized during photosynthesis (Li and Ying 2009). In this process, CO2 and H2O are combined to form a green energy alternative to diminishing fossil fuel reserves (Department of Energy 2011; Davis et al 2009). CO2 and H2O are combined to form a green energy alternative to diminishing fossil fuel reserves (Department of Energy 2011; Davis et al 2009) These materials have the potential to alleviate worsening environmental pollution. Biomass oil can be industrially produced on a large scale and will play a major role in China’s future energy development. Optimization of biomass production is needed for the advancement of this energy producing chemical industry (Anastas and Kirchhoff 2002; Kitajima and Yamamoto 2002)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call