Abstract

The structural stability of eight samples representing three soil profiles from tropical and subtropical regions of China (Latosol, Red Earth and Yellow Brown Earth) was studied by dispersion treatments. The samples were treated with the following solutions in order without previous mechanical disruption: (I) H 2O, (II) 0.1 N NaCl, (III) 0.002% Na 2CO 3, (IV) 0.1 N NaOH, (V) acid oxalate, (VI) 0.1N NaOH. These procedures were designed to disperse soil samples by removal of potentially aggregating substances and by anion adsorption. After each treatment the clay dispersed was separated by sedimentation and its mineralogical composition was studied by XRD, Mössbauer spectroscopy and magnetic susceptibility measurements to assess the role of mineralogy in the maintenance of soil structure. The amounts of iron extracted by Na-dithionite–citrate–bicarbonate were 9.6–10.8% in the Latosol, 3.1–3.4% in the Red Earth and 0.9–2.1% in the Yellow Brown Earth. It was concentrated in clay fractions and existed mainly as superdispersed particles. The hematite/goethite ratio varied from 1.7 for the Latosol to 0.2 for the Yellow Brown Earth. The clay fraction of the Yellow Brown Earth is vermiculitic and has a permanent negative charge. This soil's structural stability is mainly influenced by exchangeable Ca 2+. In the Latosol and the Red Earth, surfaces with variable (pH-dependent) charges prevail because of the large free Fe-oxides contents. Alkaline treatment (IV) promoted most dispersion of these soils, indicating the mainly electrostatic nature of interactions between mineral particles. Thus, the role of the Fe oxide minerals in these soils is one of aggregation rather than cementation. The aggregation properties of the Latosol and Red Earth are relict paleosol features inherited from an earlier period of cooler and wetter climate than the present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.