Abstract

2'-Deoxyuridine 5'-triphosphate nucleotide hydrolase (Dut) hydrolyzes dUTP to dUMP and pyrophosphate to prevent erroneous incorporation of dUMP from the dUTP metabolic pool into DNA. Dut is considered as a promising pharmacological target for antimetabolite therapy. Enzymatically active Dut is a trimer that binds the substrate at the interface between the subunits. High-speed nanoscale differential scanning fluorimetry (nanoDSF) was used to study how various physicochemical factors affect the stability of the Escherichia coli Dut trimer. Unlike with monomeric proteins, thermal unfolding of Dut occurred in two steps, the first one corresponding to dissociation of the trimer into monomeric subunits. Hydrophobic interactions and hydrogen bonds at the interfaces between the subunits were found to contribute most to trimer stabilization. The binding of nucleotide ligands partly stabilized the Dut trimer. In general, nanoDSF is a convenient assay for screening low-molecular-weight compounds for their ability to destabilize the active Dut trimer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.