Abstract

Volatile organic sulfur compounds (VOSCs) are frequently reported in eutrophic lakes during the process of algal blooms’ degradation. The algal-induced so-called black water blooms have been purported to be a big contributor to the production of VOSCs. However, the production mechanism of VOSCs in black water blooms and its influencing factors still remain unclear. In this study, a laboratory sediment/algal slurry experiment was carried out to investigate the formation process of black water blooms and factors such as temperature, microorganisms, and sulfate concentrations on the production of VOSCs in eutrophic lake sediments during the decomposition of algal blooms. The simulation study indicated that black water blooms can only be produced with the participation of sediment and algal together, which could be the result of low redox potential and the continuous release of ferrion irons (Fe2+) and hydrogen sulfide (H2S) into the lake’s ecosystem; however, neither of algal nor sediment can induce the formation of black water blooms. In addition, the sediment + algal treatment can produce more VOSCs than a single sediment or algal treatment. Higher temperature incubation and a higher concentration of sulfate additions can enhance the concentration of H2S and VOSCs in black water blooms. However, the addition of microbial inhibitors in the algal/sediment slurry indicated that sulfate reducing bacteria (SRB) can stimulate the production of VOSCs, whereas methanogen might consume some concentration of VOSCs and thus lower their concentration in black water blooms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.