Abstract

Arctic charr is one of the fish species most sensitive to climate change but studies on their freshwater habitat preferences are limited, especially in the fluvial environment. Machine learning methods offer automatic and objective models for ecohydrological processes based on observed data. However, i) the number of ecological records is often much smaller than hydrological observations, and ii) ecological measurements over the long-term are costly. Consequently, ecohydrological datasets are scarce and imbalanced. To address these problems, we propose jittered binary genetic programming (JBGP) to detect the most dominant ecohydrological parameters affecting the occurrence of Arctic charr across tributaries within the large subarctic Teno River catchment, in northernmost Finland and Norway. We quantitatively assessed the accuracy of the proposed model and compared its performance with that of classic genetic programming (GP), decision tree (DT) and state-of-the-art jittered-DT methods. The JBGP achieves the highest total classification accuracy of 90% and a Heidke skill score of 78%, showing its superiority over its counterparts. Our results showed that the dominant factors contributing to the presence of Arctic charr in Teno River tributaries include i) a higher density of macroinvertebrates, ii) a lower percentage of mires in the catchment and iii) a milder stream channel slope.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.