Abstract

The objective of this research was to elucidate the factors effecting the permeability of cell membranes of gram-negative bacteria toward hydrophobic compounds. Ultrasound treatment, cell age, and the phase state of phospholipid membranes were considered. Spin-labeling EPR method was used to quantify the penetration and distribution of a lipophilic spin probe, 16-doxylstearic acid (16-DS), inPseudomonas aeruginosacell membranes. This bacterium was chosen because of its reported resistance to the action of hydrophobic antibiotics caused by the low permeability of the outer cell membrane for hydrophobic compounds. EPR spectra were collected from cell pellets and cell lysates. The overall spin probe uptake was measured in 10% SDS–cell lysates. Lysis with 0.6% SDS revealed the fraction of the probe located in membrane sites readily accessible to the surfactant. The results indicated a structural heterogeneity ofP. aeruginosamembranes, with the presence of structurally “stronger” and “weaker” sites characterized by different susceptibility to the SDS treatment. The intracellular concentration of 16-DS was higher in insonated cells and increased linearly with the sonication power. EPR spectra indicated that ultrasound enhanced the penetration of the probe into the structurally stronger sites of the inner and outer cell membranes. The effect of ultrasound on the cell membranes was transient in that the initial membrane permeability was restored upon termination of the ultrasound treatment. These results suggest that the resistance of gram-negative bacteria to the action of hydrophobic antibiotics was caused by a low permeability of the outer cell membranes. This resistance may be reduced by the simultaneous application of antibiotic and ultrasound. This hypothesis was confirmed in our experiments withP. aeruginosaexposed to erythromycin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.