Abstract

Many large nonlinear optimization problems are based upon discretizations of underlying continuous functions. Optimization-based multigrid methods are designed to solve such discretized problems efficiently by taking explicit advantage of the family of discretizations. The methods are generalizations of more traditional multigrid methods for solving partial differential equations. The goal of this paper is to clarify the factors that affect the performance of an optimization-based multigrid method. There are five main factors involved: (1) global convergence, (2) local convergence, (3) role of the underlying optimization method, (4) role of the multigrid recursion, and (5) properties of the optimization model. We discuss all five of these issues, and illustrate our analysis with computational examples. Optimization-based multigrid methods are an intermediate tool between general-purpose optimization software and customized software. Because discretized optimization problems arise in so many practical settings we think that they could become a valuable tool for engineering design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.