Abstract

The solvation parameter model is used to establish the contribution of cohesion, dipole-type, and hydrogen-bonding interactions to the retention mechanism on Synergi Hydro-RP, Fusion-RP, and Polar-RP reversed-phase columns with methanol–water mobile phases containing from 10–70% (v/v) methanol. Large changes in relative retention on the compared columns can result from steric resistance, differences in the phase ratios, and from dewetting at low methanol compositions while changes in intermolecular interactions are responsible for smaller changes at a fixed mobile phase composition. For Synergi Hydro-RP and Polar-RP changing methanol for acetonirile is more powerful for affecting changes in retention order than changing the stationary phase. The three Synergi columns show useful selectivity differences for method development when compared with 13 other modern reversed-phase columns representing a selection of different stationary phase chemistries. The results from this study indicate the limitations of classifying reversed-phase columns by the retention of prototypical compounds to define specific retention mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call