Abstract

Single grain, rare earth–barium–copper oxide [(RE)BCO] bulk superconductors, fabricated either individually or assembled in large or complicated geometries, have a significant potential for a variety of potential engineering applications. Unfortunately, (RE)BCO single grains have intrinsically very low growth rates, which limits the sample size that may be achieved in a practical, top seeded melt growth process. As a result, a melt process based on the use of two or more seeds (so-called multiseeding) to control the nucleation and subsequent growth of bulk (RE)BCO superconductors has been developed to fabricate larger samples and to reduce the time taken for the melt process. However, the formation of regions that contain non-superconducting phases at grain boundaries has emerged as an unavoidable consequence of this process. This leads to the multiseeded sample behaving as if it is composed of multiple, singly seeded regions. In this work we have examined the factors that lead to the accumulation of non-...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call