Abstract

The present study investigates the formation of silicalite-1 seed layers on a porous carbon support of 0.5 μm pore size and α-A12O3 supports with different pore sizes (0.1 μm and 4 μm) via the slip-casting technique. The effects of support property, seed size and solvent on the formation of seed layers were investigated in detail. The growth of silicalite-1 membranes on different seeded supports by hydrothermal synthesis was also evaluated. The scanning electron microscopy (SEM) and X-ray diffraction (XRD) characterizations indicate that a continuous seed layer can be obtained on the smooth support of 0.1 μm pore size by using any seed of 100 nm, 600 nm or 2.2 μm in size, whereas, on the coarse supports with either 0.5 μm or 4 μm pore size, a continuous seed layer cannot be formed using the above seed sizes and the same seeding time. At a longer contact time, a seed layer can also be formed using 100 nm seed on the supports with larger pore size. However, the layer is not uniform and smooth. For a hydrophobic porous carbon support, seeding ethanol suspension, which has weak polarity, favors the formation of a continuous seed layer. The seed layers and membranes grown from the smaller seed are more uniform and continuous and possess smoother surfaces than those from the larger seed. The seed layer and respective grown membrane formed from nanosized seed (100 nm) are the most uniform and compact. With this method of seeded secondary synthesis of zeolite membranes, the quality of a membrane mainly depends on the quality of the seed layer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call