Abstract

The phase development sequence based on a composition equivalent to Ba2Ti9O20 during heating is found to be in the following order: BaTi5O11 > BaTi4O9 > Ba2Ti9O20. The lowest rate of formation of Ba2Ti9O20 is caused by its high surface energy and interface energy, which result in a low nucleation rate. The existence of BaTi5O11 in calcined powder helps to form Ba2Ti9O20 in sintered compacts. The effect of BaTi5O11 on Ba2Ti9O20 formation can be explained by their similar oxygen packing and by reduced volume change during transformation. The amount of BaTi5O11 formed during heating depends greatly on the compositional homogeneity of powders. The addition of SnO2 aids the formation of Ba2Ti9O20 by reduced strain energy at transformation and reduced surface energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.