Abstract
During the last few years, separation techniques using molecular imprinting polymers (MIPs) have been developed, making certain improvements using magnetic properties. Compared to MIP, Magnetic molecularly imprinted polymers (MMIPs) have high selectivity in sample pre-treatment and allow for fast and easy isolation of the target analyte. Its magnetic properties and good extraction performance depend on the MMIP synthesis step, which consists of 4 steps, namely magnetite manufacture, magnetic coating using modified components, polymerization and template desorption. This review discusses the factors that will affect the performance of MMIP as a selective sorbent at each stage. MMIP, using Fe3O4 as a magnetite core, showed strong superparamagnetism; it was prepared using the co-precipitation method using FeCl3·6H2O and FeCl2·H2O to obtain high magnetic properties, using NH4OH solution added for higher crystallinity. In magnetite synthesis, the use of a higher temperature and reaction time will result in a larger nanoparticle size and high magnetization saturation, while a higher pH value will result in a smaller particle size. In the modification step, the use of high amounts of oleic acid results in smaller nanoparticles; furthermore, determining the correct molar ratio between FeCl3 and the shielding agent will also result in smaller particles. The next factor is that the proper ratio of functional monomer, cross-linker and solvent will improve printing efficiency. Thus, it will produce MMIP with high selectivity in sample pre-treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.