Abstract
In the areas under high earthquake risk, the impact of fire damage on the seismic performance of the reinforced concrete (RC) structures ought to be realistically taken into account while assessing the fire damage to develop reuse/repair/replace strategies through the remaining service life. In the scope of this study, a literature review is conducted on the changes of mechanical characteristics of concrete and reinforcement caused by a fire with a particular emphasis on the post-cooling stage. Post-cooling behaviour of RC members is different than the behaviour under elevated temperatures and hence it is of vital importance on structural seismic performance assessment after a fire. Apart from material-wise assessment methodologies, post-fire seismic performance of RC structural members is also discussed through post-fire simulated seismic loading tests conducted on full-scale cast-in-place and precast columns. The test results pointed out to a reduction in lateral load bearing capacity of the cast-in-place columns subjected to fire whereas fire-exposed precast columns demonstrated better performance in terms of residual lateral load capacity due to the lower axial load and larger heights. All columns exhibited satisfactory performance in terms of ductility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.