Abstract

N-nitrosodimethylamine (NDMA) is a carcinogen and a disinfection byproduct that is formed by ozone and combined chlorine. Various factors affecting NDMA formation and removal were examined at pilot-scale for a treatment train consisting of ozone, biologically-active carbon (BAC) filtration, and granular activated carbon (GAC) adsorption applied to two distinct feed waters. High concentrations of ozone and monochloramine were added to the influent, demonstrating that ozone removed monochloramine precursors of NDMA. Further, longer empty bed contact times (EBCTs) of 10 min for BAC and 10 and 20 min for GAC removed NDMA to <10 ng/L for both feed waters. NDMA removal by the BAC process was most favorable >22 °C, presumably due to elevated microbial activity. A monochloramine residual of 3 mg/L-Cl2 in the BAC influent reduced NDMA removal in the 5 min EBCT BAC from 79% to 36% and in the 10 min EBCT BAC from 88.5% to 73.7%. The absence of ozone in the treatment process significantly reduced NDMA formed post ozone, but decreased NDMA removal in BAC, probably due to lower NDMA concentration in the BAC influent. Finally, adding 5 mg/L of allylthiourea, an inhibitor of ammonia-oxidizing bacteria, indicated that removal mechanisms for ammonia and NDMA are distinct. However, nitrification is still a good indicator for NDMA biodegradation potential, because nitrifying bacteria appear to flourish under similar EBCT, temperature. and monochloramine residual conditions during BAC filtration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call