Abstract

A series of experiments was performed to evaluate the influence of a number of physico–chemical factors on the diffusion of a model protein, bovine serum albumin (BSA), from dried chitosan-coated alginate microcapsules. Diffusion of BSA was quantified during the microcapsule manufacture processes (gelation, washing, rinsing) and during incubation in conditions simulating the pH encountered during the gastric (0.1 N HCl; pH 1.5) and intestinal (200 mM Tris–HCl; pH 7.5) phases of digestion. Factors tested included alginate and chitosan concentration, calcium chloride (CaCl 2) concentration in the gelation medium, loading rate, chitosan molecular mass and pH of the gelation medium. Microcapsule size and gelation time were altered in order to determine their effects on protein retention. Alginate and chitosan concentration significantly influenced BSA retention during microcapsule manufacture and acid incubation, as did calcium chloride concentration in the gelation medium ( P<0.05). BSA retention during manufacture was not significantly altered by protein loading rate or pH of the encapsulation medium, however, protein retention during acid incubation decreased significantly with increasing protein loading rate and encapsulation medium pH ( P<0.05). Microcapsules that were washed with acetone following manufacture demonstrated significantly increased protein retention during acid incubation ( P<0.05). In microcapsules that had been acetone-dried to a point whereby their mass was reduced to 10% of that immediately following encapsulation, protein retention was over 80% following 24-h acid incubation vs. only 20% protein retention from non acetone-dried microcapsules. The presence of calcium in the neutral buffer medium significantly reduced BSA diffusion in a concentration-dependent manner ( P<0.05).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call