Abstract

Factors influencing the frequency of stable transformation and co-transformation of maize protoplasts utilizing a polyethylene glycol (PEG) mediated DNA uptake procedure have been investigated. Protoplast plating conditions, pre-treatment buffer composition, PEG concentration, and DNA concentration were all found to be important. Carrier DNA was not beneficial when transforming with circular plasmid DNA. The effect of linearizing plasmid DNA was inconsistent across experiments, and may be dependent on the presence of carrier DNA. Functional co-transformation of an unlinked marker gene (hygromycin phosphotransferase) was increased by increasing the ratio of nonselected:selected DNA, and varied from 39% at a 1∶1 ratio to 65% at a 100∶1 ratio. Under optimum conditions, up to 300 transformed calli were recovered per million input protoplasts. The protocol is simple, inexpensive, and effective, and is useful for studies in maize requiring large numbers of stably transformed or co-transformed cell lines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.