Abstract

Electroless Ni-Zn-P coating with the optimal content of Ni and Zn in the alloy provides high corrosion resistance for steel. Ni-rich phase of this high hardness Ni-Zn-P alloy offers barrier protection property and sacrificial protection property is obtained from the alloy with proper content of Zn. In this work, the Ni-Zn-P coatings were prepared on steel substrates by using alkaline electroless deposition. The parameters of deposition process including complexing agent concentration, bath pH, zinc ion and nickel ion concentration were systematically studied. The microstructural morphology and elemental composition of the coatings were characterized by scanning electron microscopy. It was found that complexing agent, zinc ion and nickel ion concentrations play important role on Zn content of Ni-Zn-P alloy whereas alkalinity of the solution bath directly affects the deposition rate. The results of corrosion resistance investigated by linear polarization illustrate that the corrosion potential (Ecorr) of Ni-Zn-P coatings is negatively shifted by an increase of Zn content in the alloys. From this work, Ecorr of 83%Ni-11%Zn-6%P coating prepared in this system is slightly lower than steel. To achieve a higher effect of sacrificial protection for corrosion protection of steel, Ni-Zn-P with higher content of Zn should be further studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.