Abstract

A resolution IV fractional factorial experimental design explored the effects of seven factors on both the methanol photocatalytic oxidation (PCO) rate and the catalyst particle size distribution using a fluidized-bed reactor. The seven factors were as follows: calcination temperature, calcination time, grinding order, particle size, vibration amplitude, carrier gas humidity, and fluidization velocity. Decreasing calcination temperature from 726 to 623K increased the activity of TiO2/Al2O3 catalysts for methanol PCO. Attrition during fluidization liberated small TiO2 particles from the bulk catalyst and the rate of attrition increased with gas velocity. Attrition was the primary cause of catalyst elutriation and not the presence of fine particles initially present in the bed from catalyst preparation. Increasing humidity caused agglomeration of fine particles, which reduced the amount of catalyst carryover. Removal of fines from the catalyst bed prior to fluidization caused an increase in catalyst attrition until the amount of fines present in the bed was similar to that of a bed in which fines were not removed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.