Abstract

AbstractContinuous dissolved oxygen (DO) measurements were analyzed to evaluate the rates of pond metabolic processes related to productivity and respiration in three commercial catfish ponds in northwest Mississippi. Multiple regression models were constructed to assess the relative importance of various forcing functions on indices of net primary productivity (NPP) and whole pond respiration (WPR), duration of automated aeration, and DO concentration below various threshold values. Water temperature, solar radiation, wind run, cumulative feed, and lagged values of these parameters were considered as forcing functions. Generally, NPP and WPR were most strongly affected by water temperature and only weakly related to solar radiation. The duration of nightly aeration was also strongly related to water temperature, although 10‐d cumulative feed was an important predictor in one pond. The best predictors of duration of DO below certain threshold values were NPP, WPR and wind run, the importance of which varied depending upon the pond and the threshold value considered. Change in feeding rate from one day to the next was inversely related to feeding rate on the previous day. The results of this analysis suggest that NPP and WPR rates, and the duration of required nightly aeration in commercial catfish ponds are controlled by factors not amenable to practical management control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call