Abstract

ABSTRACT The Electric Power Research Institute (EPRI) is conducting research to investigate mercury removal in utility flue gas using sorbents. Bench-scale and pilot-scale tests have been conducted to determine the abilities of different sor-bents to remove mercury in simulated and actual flue gas streams. Bench-scale tests have investigated the effects of various sorbent and flue gas parameters on sorbent performance. These data are being used to develop a theoretical model for predicting mercury removal by sorbents at different conditions. This paper describes the results of parametric bench-scale tests investigating the removal of mercuric chloride and elemental mercury by activated carbon. Results obtained to date indicate that the adsorption capacity of a given sorbent is dependent on many factors, including the type of mercury being adsorbed, flue gas composition, and adsorption temperature. These data provide insight into potential mercury adsorption mechanisms and suggest that the removal of mercury involves both physical and chemical mechanisms. Understanding these effects is important since the performance of a given sorbent could vary significantly from site to site depending on the coal- or gas-matrix composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call