Abstract

ObjectivesTo assess the reliability of intradiscal pressure measurement during in vitro biomechanical testing. In particular, the variability of measurements will be assessed for repeated measures by considering the effect of specimens and of freezing/thawing cycles.MethodsThirty-six functional units from 8 porcine spines (S1: T7-T8, S2: T9-T10, S3: T12-T11, S4: T14-T13, S5: L1-L2 and S6: L3-L4) have been used. The intervertebral discs were measured to obtain the frontal and sagittal dimensions. These measurements helped locate the center of the disc where a modified catheter was positioned. A fiber optic pressure sensor (measuring range: -0.1 to 17 bar) (360HP, SAMBA Sensors, Sweden) was then inserted into the catheter. The specimens were divided into 3 groups: 1) fresh (F), 2) after one freeze/thaw cycle (C1) and 3) after 2 freeze/thaw cycles (C2). These groups were divided in two, depending on whether specimens were subjected to 400 N axial loading or not. Ten measurements (insertion of the sensor for a period of one minute, then removal) were taken for each case. Statistical analyses evaluated the influence of porcine specimen and the vertebral level using a MANOVA. The effect of repeated measurements was evaluated with ANOVA. The difference between freeze/thaw cycles were analysed with U Mann-Whitney test (P≤0.05).ResultsWithout axial loading, the F group showed 365 mbar intradiscal pressure, 473 mbar for the C1 group, and 391 mbar for the C2 group. With 400N axial load, the F group showed intradiscal pressure of 10610 mbar, the C1 group 10132 mbar, the C2 group 12074 mbar. The statistical analysis shows a significant influence of the porcine specimen (p<0.001), with or without axial loading and of the vertebral level with (p=0.048) and without load (p<0.001). The results were also significantly different between the freeze/thaw cycles, with (p<0.001) and without load (p=0.033). Repeated measurement (without load p = 0.82 and with p = 0.56) did not show significant influence.ConclusionsThe results tend to support that freezing/thawing cycles can affect intradiscal pressure measurement with significant inter-specimen variability. The use of the same specimen as its own control during in vitro biomechanical testing could be recommended.

Highlights

  • Biomechanical performance of spinal implants is commonly evaluated through in vitro tests on cadaveric spine specimens

  • In order to establish the physiological loads in the spine during those tests, intradiscal pressure (IDP) could be measured

  • The question remained for IDP measurement during a complete in vitro biomechanical testing protocol

Read more

Summary

Introduction

Biomechanical performance of spinal implants is commonly evaluated through in vitro tests on cadaveric spine specimens (human or animal). In order to establish the physiological loads in the spine during those tests, intradiscal pressure (IDP) could be measured. IDP can provide bone [2], ligament [3] and muscle [4], but repeated in vitro biomechanical tests commonly involve various number of freezing/thawing cycles performed along several days. The question remained for IDP measurement during a complete in vitro biomechanical testing protocol. The main objective of this study is to assess the reliability of intradiscal pressure measurement during in vitro biomechanical testing. The variability of measurements for repeated tests will be assessed by considering the effect of specimens and freezing/thawing cycles

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call