Abstract

Coolatai grass is an invasive, perennial grass from Africa and the Middle East that has infested large areas of northern New South Wales, Australia, and also occurs in other Australian states. An understanding of the seed germination ecology of Coolatai grass can assist in predicting its potential distribution and developing effective management strategies. The effects of various environmental factors on Coolatai grass seed germination were investigated in a series of laboratory experiments. The effect of diurnal alternating temperatures (5–45 C) with a 12-h photoperiod were examined on a thermogradient plate. Seed germination occurred at almost all temperature combinations from 5 to 45 C. At moderate temperatures the speed of seed germination was very high; at 30/20 C more than 80% of seeds were germinated within 12 h. Germination was slightly enhanced by the presence of light, but length of photoperiod did not affect germination. Germination at neutral pH was over 90%, and declined to 65% at acidic (pH 4) and alkaline (pH 10) pH levels. Germination was completely inhibited at an osmotic stress of −0.55 MPa or greater and was reduced by 50% at −0.37 MPa. Greater germination in relatively dry soil conditions compared with native species may contribute to the establishment of this species in the field. Results indicate that Coolatai grass seeds can germinate over a wide range of diurnal temperatures, light regimes, pH levels, and under marginal water stress. These characteristics help explain the successful invasion of Coolatai grass and provide evidence that this species is capable of establishing in many parts of Australia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.