Abstract

Drying and wetting soil-water characteristic curves (SWCCs) for five sandy soils are investigated using a Tempe pressure cell and capillary rise open tube. The test data are fitted to two SWCC equations using a least-squares algorithm. The obtained fitting parameters and some hysteretic behaviour are discussed and correlated with grain-size distribution parameters. A concept of total hysteresis is proposed to quantify the hysteresis of SWCC. The measured SWCC for one soil is also compared with the SWCC estimated from its grain-size distribution. The SWCC was also obtained at a high dry density for one of the soils. The results show that the shapes of the SWCCs are similar to the grain-size distributions of the soils and are affected by the dry density of the soil. A coarse-grained soil has a lower air-entry value, residual matric suction, and water-entry value and less total hysteresis than a fine-grained soil. The residual matric suction and water-entry value tend to approach the same value when the effective grain size D10of the soil is small, in the range of 3-6 mm. SWCCs of uniform soils have steeper slopes and less total hysteresis than those of less uniform soils. Soils with a low dry density have a lower air-entry value and residual matric suction than soils with a high dry density. The SWCC predicted from grain-size distribution is found to be sufficiently accurate.Key words: soil-water characteristic curve, water content, suction, hysteresis, grain size.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call