Abstract

To identify the conditions that promote high rates of denitrification we systematically investigated the interactions of wetland age, water temperature, organic carbon, macrophytic type and density, hydraulic conditions on denitrification rates in field and laboratory experiments. In the field, nitrate removal was consistently greater in a shallow, young, well-mixed constructed wetland, regardless of temperature and despite lower sediment denitrification potential (DNP), than in mature, more diverse, less well-mixed wetlands. We believe the presence of a benthic mesh, which supported a dense periphytic biofilm, to be partly responsible for the unexpectedly high observed rates. We measured the DNP of wetland sediments and periphyton in the laboratory with the acetylene block method under different temperatures, nitrate concentrations, and carbon sources. The overall DNP of periphyton was greater than the corresponding sediment samples on a per cell basis. We hypothesize that the organic carbon produced by the periphytic algae is readily degradable and promoted the higher denitrification rates. We found a positive relationship between DNP and biodegradable organic carbon concentration and identified chemical markers illustrating that biodegradability is promoted by a combination of polyhydroxyaromatic and polysaccharide parent structures. These findings highlight the importance of organic quality and the role of periphyton in accelerating the rates of denitrification in wetlands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.