Abstract
Derivatives 2a–15a of (R,R)-tartaric acid (1a) with all combinations of methyl ester, amide, N-methylamide and N,N-dimethylamide groups, as well as the corresponding O,O′-dibenzoyl derivatives 1b–15b and nitriles 16–18 have been synthesized. Their conformations have been studied by the NMR and CD methods in solution as well as by X-ray diffraction in the crystalline state. The preference for planar. T conformation of the four carbon chain is observed under conditions restricting the α-hydroxyacid, ester or amide group to be nearly planar, this conformation being stabilized by intramolecular hydrogen bonds of the S(5) motif and the electrostatic CO/C(β)H and CN/C(β)H coplanar bond interactions. The C=O/C(α)-O bond system tends to be either synplanar (ester, acid), or antiplanar (ester, primary and secondary amide). Ab initio calculations allowed to demonstrate that for the isolated molecules of diamides 10a and 15a there is strong preference for gauche G+(a,a) conformers, the driving force being the formation of the hydrogen bonded six-membered cycles of the S(6) motif joining the OH and C=O groups from two different halves of the molecule. The results compare favourably with the experimental values derived from NMR spectra of 15a in nonpolar solvent. In the absence of intramolecular hydrogen bonding the N,N-dimethylamide group is better accomodated in a gauche G− conformer. This releases the nonbonded interaction due to the amide methyl group anti to the carbonyl group. © 1997 Elsevier Science Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.