Abstract

The coke formation on H-ZSM-5 zeolite during the catalytic cracking of alkanes constituting naphtha was investigated with a focus on the reaction route and the role of acid concentration and crystallite size of H-ZSM-5. To reveal the coke formation route, cracking of n-hexane, methylcyclopentane or methylcyclohexane was carried out on H-ZSM-5(Si/Al=107). Cracking of n-hexane produced benzene, toluene and xylene (BTX) as secondary products from successive reaction routes through light alkenes. Only in the cracking of methylcyclopentane and methylcyclohexane, direct reaction routes partially contributed to the BTX formation. In any cases, most of the coke would be formed through BTX. The reaction of BTX into coke was analyzed from the catalytic results on Na+-exchanged and phosphorus embedded H-ZSM-5 with various crystallite sizes. The ratio of accumulated amounts of coke and BTX (coke/BTX ratio) was obtained as a measure of selectivity for coke formation. The coke/BTX ratio did not show a significant correlation with the acid concentration of catalysts, whereas the ratio gave a strong correlation with the crystallite size. H-ZSM-5 with smaller crystallite sizes would help BTX molecules escaping immediately out of micropores before being converted into coke precursor, which minimizes the coke formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.