Abstract

Statistics on the vertical wind shear in the boundary layer over the Indian Ocean were examined for the causes of regional and seasonal changes. Low-level cloud motions and surface ship wind reports were used to define the vertical shear. Temperature data from the ship reports were analyzed for boundary-layer stability related to the observed shears. Smaller wind shears were found in areas of large negative air-sea temperature difference (unstable boundary layers). The ‘thermal wind’ effects were very small over most of the tropical Indian Ocean. The largest factor affecting the speed shear was the strength of the wind itself. Larger speed shear was found under high wind conditions. A small reduction in the direction difference between cloud and ship observations also was found under higher speeds. The scatter of cloud-ship comparisons around the mean (dispersion) also decreased for higher wind speeds. Daily gridded cloud motion and ship wind speed data had a correlation coefficient of 0.8 with a scatter of 1.9 m s-1 (r.m.s.) around the mean difference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.