Abstract

The objective of the present study was to identify and quantify several factors affecting shrink in cattle during commercial long-haul transport (≥400 km; n = 6,152 journeys). Surveys were designed and delivered to transport carriers to collect relevant information regarding the characteristics of animals, time of loading, origin and destination, and loaded weight before and after transport. In contrast to fat cattle, feeder cattle exhibited greater shrink (4.9 vs. 7.9 ± 0.2% of BW, respectively; P < 0.01), and experienced longer total transport durations (12.4 vs. 14.9 ± 0.99, respectively; P < 0.01) due to border crossing protocols which require mandatory animal inspection. Shrink was greater (P < 0.001) for feeder cattle loaded at ranches/farms and feed yards compared with those loaded at auction markets. Cattle loaded during the afternoon and evening shrank more than those loaded during the night and morning (P < 0.05). Shrinkage was less in cattle transported by truck drivers having 6 or more years of experience hauling livestock compared with those with 5 yr or less (P < 0.05). Shrink increased with both midpoint ambient temperature (% of BW/°C; P < 0.001) and time on truck (% of BW/h; P < 0.001). Temperature and time on truck had a multiplicative effect on each other because shrink increased most rapidly in cattle transported for both longer durations and at higher ambient temperatures (P < 0.001). The rate of shrink over time (% of BW/h) was greatest in cull cattle, intermediate in calves and feeder cattle, and slowest in fat cattle (P < 0.05) but such differences disappeared when the effects of place of origin, loading time, and experience of truck drivers were included in the model. Cull cattle, calves and feeder cattle appear to be more affected by transport compared with fat cattle going to slaughter because of greater shrink. Several factors should be considered when developing guidelines to reduce cattle transport stress and shrink including type of cattle, ambient temperature, transport duration, driving quality, and time and origin of loading.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.