Abstract

Low adoption of agricultural technology is among the main reasons for low farm productivity and high incidence of poverty and food insecurity in sub-Saharan countries including Tanzania. In this study, we examine the factors affecting adoption of improved sorghum varieties using data from 822 randomly selected sample households in northern and central Tanzania. We employ a multiple-hurdle Tobit model to assess the factors affecting adoption after controlling for both capital and information constraints. We also use t-distributed stochastic neighbor embedding to cluster farmers into homogeneous groups. The method allows to reduce the dimensionality while preserving the topology of the dataset, which increases the clustering accuracy. It also superiors for visualization of the clustering results. Results show that radio and other mass media outlets that create awareness will increase adoption among farmers who do not face capital constraint. Some farmers lack basic resources such as land and capital, and subsidies could have a high impact on these farmers. Other farmers simply need assurance on the performance of improved sorghum varieties. Field days, on-farm trials, and demonstration plots could be useful in supporting these farmers. A tailored support system, however, needs a sustained investment in both quantity and quality of services. There is therefore a need to develop a pluralistic research and extension systems that encourage the use of information technologies and community-based organizations to reach specific groups of farmers.

Highlights

  • The population of Sub-Saharan Africa is growing fast, and 70% of the population is in rural areas that depend on the agricultural sector as a source of livelihood

  • Gollin, Morris, and Byerlee (2005) show that improved maize varieties accounted for 17% of the total area harvested in Sub-Saharan Africa compared to 90% in East and South East Asia and the Pacific and 57% in Latin America and the Caribbean

  • One of the goals of this study was to quantify the factors influencing the adoption of improved sorghum varieties (ISVs) developed by the International Crop Research Institute for Semi-Arid Tropics (ICRISAT) and tested by the Department of Research and Development (DRD) of Tanzania’s Ministry of Agriculture, Livestock, and Fisheries

Read more

Summary

Introduction

The population of Sub-Saharan Africa is growing fast, and 70% of the population is in rural areas that depend on the agricultural sector as a source of livelihood. Improving agricultural production and productivity through adoption of improved agricultural technologies is an important pathway that will improve livelihoods of the majority and enhance food security. While many countries in Asia, the Caribbean, and Latin America have registered production and productivity gains from adopting agricultural technologies such as hybrid seeds, inorganic fertilizer, and irrigation, in Sub-Saharan Africa, the adoption of promising agricultural technologies has been far from ubiquitous and has remained low. Gollin, Morris, and Byerlee (2005) show that improved maize varieties accounted for 17% of the total area harvested in Sub-Saharan Africa compared to 90% in East and South East Asia and the Pacific and 57% in Latin America and the Caribbean. As discussed in Gollin, Lagakos, and Waugh (2014), there is a large gap between what the sub-Saharan farmer produces per unit area and production potential with the available technology

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.