Abstract

We propose Factor Matting , an alternative formulation of the video matting problem in terms of counterfactual video synthesis that is better suited for re-composition tasks. The goal of factor matting is to separate the contents of a video into independent components, each representing a counterfactual version of the scene where the contents of other components have been removed. We show that factor matting maps well to a more general Bayesian framing of the matting problem that accounts for complex conditional interactions between layers. Based on this observation, we present a method for solving the factor matting problem that learns augmented patch-based appearance priors to produce useful decompositions even for video with complex cross-layer interactions like splashes, shadows, and reflections. Our method is trained per-video and does not require external training data or any knowledge about the 3D structure of the scene. Through extensive experiments, we show that it is able to produce useful decompositions of scenes with such complex interactions while performing competitively on classical matting tasks as well. We also demonstrate the benefits of our approach on a wide range of downstream video editing tasks. Our project website is at: https://factormatte.github.io/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.