Abstract

Graph matching plays a central role in solving correspondence problems in computer vision. Graph matching problems that incorporate pair-wise constraints can be cast as a quadratic assignment problem (QAP). Unfortunately, QAP is NP-hard and many algorithms have been proposed to solve different relaxations. This paper presents factorized graph matching (FGM), a novel framework for interpreting and optimizing graph matching problems. In this work we show that the affinity matrix can be factorized as a Kronecker product of smaller matrices. There are three main benefits of using this factorization in graph matching: (1) There is no need to compute the costly (in space and time) pair-wise affinity matrix; (2) The factorization provides a taxonomy for graph matching and reveals the connection among several methods; (3) Using the factorization we derive a new approximation of the original problem that improves state-of-the-art algorithms in graph matching. Experimental results in synthetic and real databases illustrate the benefits of FGM. The code is available at http://humansensing.cs.cmu.edu/fgm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call