Abstract
A tadpole (also a canoe paddle or lollipop) is a graph that arises from a cycle and a path by gluing a terminal vertex of the path to an arbitrary vertex of the cycle. In this article, we show that all tadpoles factorize the complete graph if n is odd. We use methods similar to those used for isomorphic factorizations of complete graphs into spanning trees. In Section 4 of this article, we show that our methods do not work for isomorphic factorizations of into tadpoles if n is even.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AKCE International Journal of Graphs and Combinatorics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.