Abstract
An important component of many image alignment methods is the calculation of inner products (correlations) between an image of pixels and another image translated by some shift and rotated by some angle. For robust alignment of an image pair, the number of considered shifts and angles is typically high, thus the inner product calculation becomes a bottleneck. Existing methods, based on fast Fourier transforms (FFTs), compute all such inner products with computational complexity per image pair, which is reduced to if only distinct shifts are needed. We propose to use a factorization of the translation kernel (FTK), an optimal interpolation method which represents images in a Fourier–Bessel basis and uses a rank-H approximation of the translation kernel via an operator singular value decomposition (SVD). Its complexity is per image pair. We prove that , where 2W is the magnitude of the maximum desired shift in pixels and is the desired accuracy. For fixed W this leads to an acceleration when is large, such as when sub-pixel shift grids are considered. Finally, we present numerical results in an electron cryomicroscopy application showing speedup factors of 3–10 with respect to the state of the art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.