Abstract
We establish the factorization of the Dirac operator on an almost-regular fibration of \mathrm{spin}^c manifolds in unbounded KK-theory. As a first intermediate result we establish that any vertically elliptic and symmetric first-order differential operator on a proper submersion defines an unbounded Kasparov module, and thus represents a class in KK-theory. Then, we generalize our previous results on factorizations of Dirac operators to proper Riemannian submersions of \mathrm{spin}^c manifolds. This allows us to show that the Dirac operator on the total space of an almost-regular fibration can be written as the tensor sum of a vertically elliptic family of Dirac operators with the horizontal Dirac operator, up to an explicit 'obstructing' curvature term. We conclude by showing that the tensor sum factorization represents the interior Kasparov product in bivariant K-theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.