Abstract
For a positive real α, we can consider the additive submonoid M of the real line that is generated by the nonnegative powers of α. When α is transcendental, M is a unique factorization monoid. However, when α is algebraic, M may not be atomic, and even when M is atomic, it may contain elements having more than one factorization (i.e., decomposition as a sum of irreducibles). The main purpose of this paper is to study the phenomenon of multiple factorizations inside M. When α is algebraic but not rational, the arithmetic of factorizations in M is highly interesting and complex. In order to arrive to that conclusion, we investigate various factorization invariants of M, including the sets of lengths, sets of Betti elements, and catenary degrees. Our investigation gives continuity to recent studies carried out by Chapman et al. in 2020 and by Correa-Morris and Gotti in 2022.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.