Abstract

Systems driven out of equilibrium can often exhibit behaviour not seen in systems in thermal equilibrium —for example phase transitions in one-dimensional systems. In this talk I will review a simple model of a nonequilibrium system known as the ‘zero-range process’ and its recent developments. The nonequilibrium stationary state of this model factorises and this property allows a detailed analysis of several ‘condensation’ transitions wherein a finite fraction of the constituent particles condenses onto a single lattice site. I will then consider a more general class of mass transport models, encompassing continuous mass variables and discrete time updating, and present a necessary and sufficient condition for the steady state to factorise. The property of factorisation again allows an analysis of the condensation transitions which may occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call