Abstract
The main result is that every weakly compact operator between Banach spaces factors through a reflexive Banach space. Applications of the result and technique of proof include new results (e.g., separable conjugate spaces embed isomorphically in spaces with boundedly complete bases; convex weakly compact sets are affinely homeomorphic to sets in a reflexive space) and simple proofs of known results (e.g., there is a reflexive space failing the Banach-Saks property; if X is separable, then X = Z ∗∗ Z for some Z; there is a separable space which does not contain l 1 whose dual is nonseparable).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.