Abstract

The computational difficulty of factoring large integers forms the basis of security for RSA public-key cryptography. The best-known factoring algorithms for classical computers run in sub-exponential time. The integer factorization problem can be reduced to the Boolean Satisfiability problem (SAT). While this reduction has proved to be useful for studying SAT solvers, large integers have not been factored via such a reduction. Shor’s quantum factoring algorithm factors integers in expected polynomial time. Large-scale fault-tolerant quantum computers capable of implementing Shor’s algorithm are not yet available, preventing relevant benchmarking experiments. Recently, several authors have attempted quantum factorizations via reductions to SAT or similar NP-hard problems. While this approach may shed light on algorithmic approaches for quantum solutions to NP-hard problems, in this paper we study and question its practicality. We find no evidence that this is a viable path toward factoring large numbers, even for scalable fault-tolerant quantum computers, as well as for various quantum annealing or other special purpose quantum hardware.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.